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A new method to eliminate linearly dependent two electron integrals in an AO basis is 
proposed. In the conventional method, the number of computer operations to make the list o! 
independent integrals is proportional to the number of two electron integrals. It is proportiona: 
to the number of overlap charges in the present method. Thus. the computer time required is 
negligible in comparison with the conventional method. Results of actual computations using 
the present method are reported for naphthalene (C,, H,). cyclobutane (C,H,) and NiF,,. 

1. INTRODCCT~ON 

Recently, ab initio LCAO MO calculations have been carried out on many 
molecules of medium size using modern computers. However, the treatment of two 
electron integrals is still a major problem in so-called large scale calculations. The 
advantage of evaluating only linearly independent integrals is a substantial saving in 
computer time and storage space. There are a few computer programs for ab initio 
LCAO SCF MO calculations which take molecular symmetry into account [l-3]. A 
program package called JAMOL2 for ab initio LCAO SCF MO calculations has 
been completed by our research group. JAMOL2 uses the fuil molecular symmetry to 
reduce the number of two electron integrals that must be treated. The procedure for 
computing two electron integrals using symmetry consists of the following three 
steps: (1) creating a list of independent two electron integrals; (2) generating the 
integrals; and (3) transforming them to a symmetry orbital (SO) basis. In the course 
of using JAMOL2, it became apparent that for molecules with high symmetry 
creating the integral list and transforming them to a SO basis were more time 
consuming processes than generation. For example, in a CoF, calculation 141, 20 and 
64 ‘3) of the computer time was spent in creating the list and transforming to a SO 
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basis, respectively, while only 11 o/o was consumed in generating the integrals.’ 
Therefore, for the sake of economy, it is important to increase the efficiency of the 
two most time consuming steps. An improved algorithm for transforming the 
integrals has been previously proposed by Takada and Sasaki 151. 

A new algorithm to make the list of linearly independent two electron integrals is 
described in the present paper. Conventionally, the symmetry operations of the point 
group are applied to each integral to determine the linearly dependent integrals. 
Therefore, the number of necessary computer operations is proportional to the 
number of two electron integrals and it becomes very time consuming to make the list 
in the case of large scale calculations. In the present method, the number of computer 
operations required to make the list is only proportional to the number of overlap 
charges. Thus, the computer time required for the list creation is negligible in 
comparison with the conventional method. Although some dependent integrals are 
generated in the present method, the total amount of computer time required for 
computing the two electron integrals is significantly reduced. 

Many improvements have been completed on JAMOL2, including implementation 
of the present algorithm. The new version is called JAMOL3 (6 1. 

In this paper. the algorithm is presented in Section 2 and some results from actual 
computations are given in Section 3. 

2. ALGORITHM 

When contracted Gaussian type orbitals (CGTOs) are used as basis functions, the 
evaluation of two electron integrals can be carried out very efficiently by introducing 
shell structure 191. A shell consists of all CGTOs which have the same orbital 
exponents and are centered on the same atom. The shells are denoted ti, s,“,..., SF, 
s;,..., S”? IJ where the superscripts indicate on which atom each shell is centered and the 
subscripts indicate the type of shell. For example, in the case of a minimal basis set 
for a carbon atom, the shells are sf = {x,,), s: = {x1,}, sy= {xzp,,x2pY,xzP~~ when 
different orbital exponents are used for 2s and 2p orbitals. 

Now we show how molecular symmetry can be applied to the shell structure to 
eliminate most of the dependent two electron integrals. When the molecule has 
symmetry, equivalent atoms in the molecule can be determined by applying the 
symmetry operations of the point group. We define new shells S,, S,, S, and S,,, 
called extended shells, as follows: the extended shell S, consists of all shells which are 
equivalent by symmetry. In other words, shells of the same type on equivalent atoms 
form an extended shell, for example, S, = {SF’, sf2, sy3, st4), where carbon atoms Cl, 
C2, C3 and C4 can be transformed into one another by appropriate symmetry 
operations of the point group. 

’ These results were obtained with JAMOL2 using an integral generation program written by Sasaki, 
which does not take advantage of shell structure (7). This program has now been revised by Sasaki to 
include shell structure and is incorporated in JAMOL3 181. The percentage of the total computer time 
required for generation using the new integral program is much less than with the previous version. 
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The handling of two electron A0 integrals is simplified by arranging them ifi 
extended shell blocks (S,S, ( S,S,). The advantage of this arrangement is that list 
creation, integral generation and transformation to a SO basis ean be carried ou? for 
each block independently of the others. 

For an integral block (S,S, I S,S,), list creation iI?volves the following two steps: 
(1) eliminating dependent two electron integrals and (2) determining which integrais 
are zero by symmetry. This is accomplished by (I) creating two lists of overiap 
charges, corresponding to each of the (S,S,i and IS,S,) sets and (2) forming bit 
patterns for individual overlap charges, which indicate if an A0 integrai given b? 
combining the two overlap charges is zero by molecular symmetry. 

First, a list of the independent overlap charges included in Ihe (S,S,/ set is made. 
To make the list, one of the shells, for example, sf. is arbitrariiy selected from the 
extended shell S, = {$, sj”, $ ” ,..., sy ““‘} and combinations are formed with ali Ihe 
shells inciuded in the extended shell S,, i.e., ($sy’, {sfs;“..... (s:sy”” . If some 
dependent overlap charges are included in the list, they are deleted by app!ying 
symmetry operations. Next, a list is made for the JS,S,j set. This list is sonstrdcted 

Create list of ali overlap 

ipges in :SKSi,) sets 

a 

I (mstruct bit patterns for 
j all overlap charges 

! 

I 

whether each overlap charge is 

I 

1 Output to disk 

Evaluate terms depending only 

FIG. 1. Flowchart of program. (a) Preparation for integral generation. The integral evaluation 
program was written by F. Sasaki 181 and is incorporated in JAMOL3 i6]. (*:i) TEI: two elecxon 
integral. (X-X) An equivalent orbital group consists of the atomic orbitals which are transformed into 
one another by symmetry operations. 
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differently from the (S,S,I list in that it contains all combinations of pairs of shells 
including dependent ones. The overlap charge lists are stored on disk and are later 
combined in the integral generation step to determine which integrals must be 
evaluated. Thus, with the present algorithm, the necessity of storing an integral list is 
avoided. 

Next, the following procedure can be used to determine which integrals are zero by 
symmetry so as to avoid computing them. Each symmetry adapted overlap charge 
corresponds to a particular irreducible representation of the point group and consists 
of a linear combination of A0 overlap charges xrxr. Each A0 overlap charge will 
contribute to one or more symmetry adapted overlap charges. The information can be 
stored in the computer as a bit pattern. For example, in H,O, an overlap charge of 
the type xlSH,xlS,,, contributes to two symmetry adapted overlap charges which belong 

r 
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DO loop for ;S,S,) sets 

I / 
Input data from disk 

J- 
I 

DO loop ior (SIS,,/ sets 

b 

Input data from disk 

Logical .AND. between the 
two bit patterns 

I 

FIG. 1. (h) Integral generation for block (S,S, / .S,S,.). 
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to the A, and B2 irreducible representrations of the C,,, point group. Therefore, the bit 
pattern for the overlap charge ~,x,,l~lSH, is 

That is, a bit corresponds to each irreducible representation. If a given bit is on: the 
A0 overlap charge contributes to the symmetry adapted overlap charge belonging to 
the corresponding irreducible representation. The value of the integral &,x,$ {x,,Y,,) is 
zero unless the bit patterns for the two overlap charges xr~,$ and xlxU have at least 
one pair of corresponding bit positions turned on. To check whether the integral 
vanishes or not, the logical operation .AND. is taken between the two bit patterns in 
the integral generation step. If the result of the logical operation is false. the value of 
the integral is zero and the integral is not calculated. 

In Fig. 1. a simplified flowchart of the program implementing the present algorithm 
is shown. It should be noted that the first three steps depend only on overlap charges 
and therefore the number of computer operations is proportionai to the number of 

overlap charges, not to the number of two electron integrals. The test using the 
logical operation *AND. is repeated as many times as there are numbers of two 
eiectron integrals. However, since the logical operation is very fast, the CP& time 
required is negligible. 

The three steps of list creation, generation and transformation are carried out for 
each integral block (S,S, / S,S,,) for all combinations of I, J, K and L. After 
completion of the transformation step for a given block, the resulting SO integrals are 
output to disk or magnetic tape. Therefore, the necessary core is twice the core 
needed for storing the independent A0 integrals? since sorting them into equivalent 

I 
Sort the integrals into c equivalent orbital groups **” 
in core 

I 
I 

Transform to SO basis 

~a&$i~;s 

FIG. 1. (c) Transformation to a SO basis 
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TABLE I 

Number of Two Electron Integrals 

Molecules Symmetry 
-.__- ____- 

W c,, (4)h 
C.sI-4 Dai, (16) 
C,oHs D,, (8) 

NiF 
COG6 

0, (48) 
0, (48) 

Cu-porphine DC, (16) 

Co-porphine Dab (16) 

Number of 
Number of Number of independent 

orbitals TEIs” TEIs” Ratio 
-__---- -__ -.-- 

15’ 1,260 2,584 0.36 
56 1,274.406 86.800 0.068 
58 1.464,616 219,484 0.15 

(1 02,6C0)d (0.070) 
61 I,7883886 46,490 0.026 

128 34.084,896 820,567 0.024 
178 126,906,346 9,633,076 0.076 

(904,080) (0.007) 
187 154.501,831 10.096.264 0.065 

(2.284,595) (0.015) 

’ TEI; two electron integral. 
’ Number of symmetry operations. 
’ The basis sets; minimal basis set for C,,H,, double zeta basis set for C,H, and (4s3p2d/3rlpl for 

NiF,. 
“An integral approximation based on semiorthogonalized orbitals is adopted. See Refs. [ 10-12). 

orbital groups is needed in the present method as shown in Fig. 1. In the present 
method, the core memory requirement is largest in the case of the 0, point group 
because there are six equivalent ligand atoms. In this case, the largest extended shell 
consists of 3d orbitals on the ligand atoms and the number of independent overlap 
charges is 76.2 Therefore, the core size for real applications is estimated not to exceed 
1.6 Mbyte. Most modern computers have adequate core memory to permit the above 
procedures to be carried out in core without the necessity of creating temporary files. 

3. RESULTS 

The number of linearly independent two electron integrals is shown for several 
molecules in Table I. It is apparent that in each case the number of independent 
integrals is roughly equal to the number of two electron integrals divided by the 
number of symmetry operations in the point group. Therefore, even in the case of 
lower symmetry, the use of molecular symmetry allows a considerable reduction in 
computer time and storage space. 

In Table II, the number of two electron integrals that must be evaluated as 

’ When 3.7, 3p and 3d functions with the same exponents or 4Jfunctions arc used for ligand atoms, the 
number of AOs in an extended shell is large. Thus, more core memory will bc required to store the 
integrals. However, in this case, the cxtcnded shell can be divided into smaller groups in such a way as 
not to break up equivalent orbital groups. The efficiency of integral evaluation is slightly reduced by 
dividing the extended shell into smaller groups, but the core size required is kept to less than 1.6 Mbyte. 
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TABLE II 

Number of Two Electron Integrais 

Molecules 

C,,4” C,h, NT,, h 
- - - _-. --- - -.--- -..- - - ---- -.---- .-.--.-- -..-.-- - --- - -.. 

Numbe: of CGTOs 58 56 61 
Symmetry D,, 122, C; 
Number of two electron integrals 

1. No consideration of symmetry 1.464.616 1.234.406 !.788.885 
2. Full consideration of symmetry 102.600 86.800 46.490 
3. Symmetry operations on overlap IYKOII 140,748 153.41X 

charges 
4. Symmetry operations on overlap 114.095 1 ! 7.436 142.622 

charges and zero check 
Ratio (4.12.) i.11 1.35 3.0: 

‘I An integral approximation based on semiorthogonalized orbit& is adopted. See Ref. 110 ]. 
’ See Ref. j i 3 1. 

obtained by the present method is shown for C,HR7 C,,,H, and NiF,. The numbers 
in the third row were obtained without testing for integrals that are zero by 
symmetry. The present method reduces the number of integrals to almost that of the 
independent integrals obtained by full consideration of molecular symmetry. The 
check for zero integrals leads to a relatively small but significant reduction in the 
number of integrals to be calculated. Since C,,H, is a planar molecule and integrals 
of type (au j an) and (on 1 nn) are zero, the test for zero integrais is particularly 
effective in reducing the number of integrals for this molecule. The reason why the 
ratio is largest for NiF, in spite of its having the highest symmetry can be explained 
in the following way. The number of equivalent AOs on the Ni atom is only 3. In the 
NiF, calculation. the number of extended shells on Ni and F atoms is 9 and 4, 
respectively. The probability that either S, and/or S, is an extended shell on the Ni 
atom in all the (S,S,I combinations, is 89 O/. Therefore, the present method does not 
do as well in reducing the number of dependent integrals in the NiF, calcu!ation. 
Nevertheless, the reduction seems to be adequate because the number of integrals 
ob?ained by this method is about 1/13th of the total number. The ratio will be much 
smaller in the case of complexes such as Co(CN),, because the number of AOs on 
the ligand atoms increases in comparison with the number of AOs on the centra! 
metal. 

The present approach outlined to determine the independent overlap charges in 
(S,S,i is identical to the method proposed by Dupuis and King 13 1. In their method, 
further redundancies related to overlap charges in jS,S,) are eliminated, while the 
present method uses all the overlap charges. As mentioned above, this creates the 
higher ratio for NiF, in Table II. However, from the other two ratios, the j S,S,‘j 
redundancies are almost eliminated even with this method. The present algorithm was 
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TABLE III 

Computer Time by JAMOLZ and JMAOL3 (set) 

Molecules JAMOLZ 

List creation C, H, 90 
C,,,H, 32 
NiF, 132 

Generation of TEIs 
in A0 basis” 

C,H, 
C,oH, 
NiF, 

Total C,H, 246 38 6.5 
Cm% 1605 563 2.9 
NiF, 299 231 1.3 

156 38 (1.35)* 5.5’ 
1573 563 (1.11) 3.1 
167 231 (3.07) 2.2 

JAiMOL3 Ratio 

- 
- 
- 

“The number of primitive CGTOs is 84, 174 and 128 in C,H,, C,,H, and NiF,, respectively. 
bRatio of the number of two electron integrals to be calculated in JAMOL3 to the number of 

independent integrals. See Table II. 
’ Ratio of CPU time for calculating one integral. 

designed to make a good interface with a transformation algorithm from an A0 basis 
set to a SO basis set 151, and the Dupuis and King method and the present one are 
two different approaches in ab initio calculations to take advantage of molecular 
symmetry. 

In Table III, the computer time for these calculations is shown. The integral 
evaluation program in JAMOL2, which was written by Sasaki, does not take 
advantage of shell structure (71. With the use of shell structure and many additional 
improvements on the program, integral evaluation is much faster with JAMOL3 181. 

The present method has the following advantages. 

1. The number of computer operations needed for list creation is only propor- 
tional to the number of overlap charges, not to the number of two electron integrals. 
Therefore, the computer time required is negligible in comparison with the conven- 
tional method. Even though some dependent integrals are evaluated, much computer 
time is saved in large scale calculations. 

2. This algorithm can be easily used in conjunction with integral approx- 
imations such as those based on semiorthogonalized orbitals [ 14, 15 J. In this approx- 
imation scheme, overlap charges are divided into two groups, strongly related pairs 
and weakly related pairs. If either of the overlap charges ,Y,K~ and xIxU in an integral 
C;r,.x, i x,x,) is a weakly related pair, the integral is ignored. Thus, any overlap charge 
which is a weakly related pair can be omitted from the (S,S,( and (S,S,,) lists. 

By using the present algorithm and the improved integral transformation algorithm 
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to a SO basis set, the efficiency gained by exploiting molecular symmetry is 
significantly increased in large scale calculations especially for metal complexes such 
as metallo-porphinc. 
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